Directory: Faculty

Jennifer S. Shumaker-Parry

Peter B. Armentrout

PHYSICAL & ANALYTICAL CHEMISTRY

Distinguished Professor and Cannon Fellow

B.S. Case Western Reserve University, 1975
Ph.D. California Institute of Technology, 1980 
Postdoctoral, Bell Labs, 1981

Phone: (801) 581-7885

Office: 3402 HEB-S

Email: armentrout@chemistry.utah.edu

Armentrout Research Group Site

Publications

Activities & Awards

  • Presidential Young Investigator, National Science Foundation, 1984-89
  • Alfred P. Sloan Research Fellow, 1986-1990
  • Camille and Henry Dreyfus Teacher-Scholar, 1987-1992
  • Fellow, AAAS, 1992; APS, 1994; JSPS, 1999
  • Buck-Whitney Award, ACS Eastern New York Section, 1993
  • University of Utah Distinguished Research Award, 1994
  • Mack Memorial Award Lecturer, Dept. of Chem., Ohio State University, 1997
  • Biemann Medal, Am. Soc. Mass Spectrometry, 2001
  • Utah Award of Chemistry, American Chemical Society, 2002
  • Cannon Fellow, Chemistry Department, University of Utah, 2003-present
  • Phi Kappa Phi Honor Society, 2004
  • Outstanding Alumnus of the Year, Dept. Chem., Case Western Reserve University, 2004
  • Field and Franklin Award in Mass Spectrometry, American Chemical Society, 2009
  • U of U Rosenblatt Prize for Excellence, 2011
  • Editorial Board: current, Int. J. Mass Spectrom., formerly, J. Am. Chem. Soc., J. Chem. Phys., J. Phys. Chem., Organometallics, J. Am. Soc. Mass Spectrom.; J. Cluster Science

Research Interests

Our research provides a detailed understanding of the thermochemistry, kinetics, and dynamics of simple and complex chemical reactions. Our group seeks to understand, from a fundamental viewpoint, reactions involved in biological chemistry, catalysis, surface chemistry, organometallic chemistry, and plasma chemistry. Techniques involved include mass spectrometry, ion beams, molecular beams, laser spectroscopy, and ab initio theory.

plots

Chemistry of state-selected atomic metal ions. Transition metals have an abundance of low-lying electronic states that we have shown for 1st-row metals can have very different reactivity. We have recently developed a novel ion mobility source that should permit such studies to be extended to the 2nd- and 3rd- row metals where spin-orbit interactions become important.

Chemistry of unsaturated organometallic complexes. By varying the number and types of ligands attached to metal ions, we study periodic trends, the influence of ligand substitution, and the effects of metal oxidation state on reactivity. These studies provide quantitative thermodynamic data and qualitative electronic information on unsaturated organometallic complexes: the key intermediates in homogeneous catalysis.

Chemistry of solvated ions. Gas-phase solvated ions are important species in the atmosphere and in aerosols and provide a bridge between phenomena in condensed phases and the gas phase. Detailed experiments on such species yield quantitative information that cannot be obtained easily in the condensed phase.

Thermochemistry of metal ions and protons interacting with biological molecules. Our work includes some of the first measurements of the binding energies of Li+, Na+ K+, and Rb+ with the nucleic acid bases, amino acids, and small peptides. The thermochemistry of protonated peptides is also being examined.

Chemistry of metal cluster ions. Laser vaporization, supersonic expansion techniques generate cold transition metal cluster ions that can be size-selected using mass spectrometry. We measure the thermodynamic stabilities of these clusters and their reactivity with a variety of molecules. These studies provide quantitative data relevant to surface chemistry and heterogeneous catalysis.

Environmental chemistry. A long standing interest has involved an investigation of the thermochemistry of systems having potential importance in the clean up of nuclear waste sites.

Threshold behavior: theory and experiment. A theoretical understanding of the kinetic energy dependence of reaction cross sections is in its infancy. We are developing theoretical models that include application of statistical theories, reaction dynamics, and non-adiabatic effects.

Ab initio theory. We consistently apply ab initio theory to provide structures, molecular parameters, and bond energies for use in the analysis and interpretation of our experimental results.

topSelected Publications

  • 415. “Infrared Multiple Photon Dissociation Spectroscopy of Cationized Histidine: Effects of Metal Cation Size on Gas-Phase Conformation” Citir, M.; Hinton, C. S.; Oomens, J.; Steill, J. D.; Armentrout, P. B. J. Phys. Chem. A 2012, 116, 1532-1541. doi:10.1021/jp209636a
  • 416. “Thermodynamics and Mechanisms of Protonated Diglycine Decomposition: A Computational Study” Armentrout, P. B.; Heaton, A. L. J. Am. Soc. Mass Spectrom. 2012, 23, 621-631. doi:10.1007/s13361-011-0224-7
  • 417. “Thermodynamics and Mechanisms of Protonated Diglycine Decomposition: A Guided Ion Beam Study” Armentrout, P. B.; Heaton, A. L. J. Am. Soc. Mass Spectrom. 2012, 23, 632-643. doi:10.1007/s13361-011-0225-6
  • 418. “The Simplest b2+ Ion: Determining Its Structure from Its Energetics by a Direct Comparison of the Threshold Collision-induced Dissociation of Protonated Oxazolone and Diketopiperazine” Armentrout, P. B.; Clark, A. A. Int. J. Mass Spectrom. (Alex G. Harrison Honor Issue) 2012, 316–318, 182–191. doi:10.1016/j.ijms.2012.01.004
  • 419. “Experimental investigation of the complete inner shell hydration energies of Ca2+: Threshold collision-induced dissociation of Ca2+(H2O)x complexes (x = 2 – 8)” Carl, D. R.; Armentrout, P. B. J. Phys. Chem. A 2012, 116, 3802-3815. doi:10.1021/jp301446v
  • 420. “Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Cs+ to Gly, Pro, Ser, Thr, and Cys” Armentrout, P. B.; Chen, Y.; Rodgers, M. T. J. Phys. Chem. A 2012, 116, 3989-3999. doi:10.1021/jp3012766
  • 421. “Infrared Multiple Photon Dissociation Spectroscopy of Protonated Histidine and 4-Phenyl Imidazole” Citir, M.; Hinton, C. S.; Oomens, J.; Steill, J. D.; Armentrout, P. B. Int. J. Mass Spectrom. (Armentrout Honor Issue), 2012, 330-332, 6-15. doi:10.1016/j.ijms.2012.06.002
  • 422. “Alkali Metal Cation Interactions with 12-Crown-4 in the Gas Phase: Revisited” Armentrout, P. B.; Austin, C. A.; Rodgers, M. T. Int. J. Mass Spectrom. (Armentrout Honor Issue), 2012, 330-332, 16-26. doi:10.1016/j.ijms.2012.06.018
  • 423. “Fragmentation Reactions of Thiourea- and Urea-compounds Examined by Tandem MS-, Energy-resolved CID Experiments, and Theory” Falvo, F.; Fiebig, L.; Dreiocker, F.; Wang, R.; Armentrout, P. B.; Schäfer, M. Int. J. Mass Spectrom. (Armentrout Honor Issue), 2012, 330-332, 124-133. doi:10.1016/j.ijms.2012.06.023
  • 424. “Thermochemistry of Alkali Metal Cation Interactions with Histidine: Influence of the Side-Chain” Armentrout, P. B.; Citir, M.; Chen, Y.; Rodgers, M. T. J. Phys. Chem. A, 2012, 116, 11823–11832. doi:10.1021/jp310179c
  • 425. “The Power of Accurate Energetics (or Thermochemistry: What is it Good for?)” Armentrout, P. B. J. Am. Soc. Mass Spectrom. (Invited Critical Insight), 2013, 24, 173-185. doi:10.1007/s13361-012-0515-7
  • 426. “Threshold Collision-Induced Dissociation and Theoretical Studies of Hydrated Fe(II): Binding Energies and Coulombic Barrier Heights” Hofstetter, T. E.; Armentrout, P. B. J. Phys. Chem. A (Peter B. Armentrout Festschrift) 2013, 117, 1110-1123. doi:10.1021/jp3044829
  • 427. “Metal-Cyclopentadienyl Bond Energies in Metallocene Cations Measured Using Threshold Collision-Induced Dissociation Mass Spectrometry” Rowland, T. G.; Sztáray, B.; Armentrout, P. B. J. Phys. Chem. A (Peter B. Armentrout Festschrift) 2013, 117, 1299-1309. doi:10.1021/jp307418c
  • 428. “Critical Evaluation of Kinetic Method Measurements: Possible Origins of Non-linear Effects” Bourgoin-Voillard, S.; Afonso, C.; Lesage, D.; Zins, E.-L.; Tabet, J.-C.; Armentrout, P. B. J. Am. Soc. Mass Spectrom. 2013, 24, 365-380. doi:10.1007/s13361-012-0554-0
  • 429. “Threshold Collision-Induced Dissociation of Hydrated Magnesium: Experimental and Theoretical Investigation of the Binding Energies for Mg2+(H2O)x complexes (x = 2 – 10)” Carl, D. R.; Armentrout, P. B. ChemPhysChem (Special Issue: Aggregation of Small Molecules) 2013, 14, 681-697. doi:10.1002/cphc.201200860
  • 430. “Metal Cation Dependence of Interactions with Amino Acids: Bond Energies of Rb+ and Cs+ to Met, Phe, Tyr, and Trp” Armentrout, P. B.; Yang, B.; Rodgers, M. T. J. Phys. Chem. A 2013, 117, 3771-3781. doi: 10.1021/jp401366g
  • 431. “Thermochemistry of Non-Covalent Ion-Molecule Interactions” Armentrout, P. B.; Rodgers, M. T. Mass Spectrometry 2013, 2, S0005.
  • 432. “Structures of the Dehydrogenation Products of Methane Activation by 5d Transition Metal Cations” Lapoutre, V. J. F.; Redlich, B.; van der Meer, A. F. G.; Oomens, J.; Bakker, J. M. Sweeney, A.; Mookherjee, A.; Armentrout, P. B. J. Phys. Chem. A 2013, 117, 4115–4126. doi:10.1021/jp400305k
  • 433. “Role of Methylation on the Thermochemistry of Alkali Metal Cation Complexes of Amino Acids: N-Methyl Proline” Mookherjee, A.; Armentrout, P. B. Int. J. Mass Spectrom. (Jennings & Scrivens Honor Issue) 2013, 345–347, 109–119. doi:10.1016/j.ijms.2012.08.021
  • 434. “Quantum chemical study of the reactions between Pd+/Pt+ and H2O/H2S” Oier, L.; Matxain, J. M.; Ruipérez, F.; Ugalde, J. M.; Armentrout, P. B. Chem. Eur. J. 2013, 19, 8832-8838. doi: 10.1002/chem.201300222
  • 435. “The Bond Energy of ReO+: Guided Ion-Beam and Theoretical Studies of the Reaction of Re+ (7S) with O2” Armentrout, P. B. J. Chem. Phys. 2013, 139, 084305. doi: 10.1063/1.4818642
  • 436. “The Bond Energy of IrO+: Guided Ion-Beam and Theoretical Studies of the Reaction of Ir+ (5F) with O2” Armentrout, P. B.; Li, F.-X. J. Phys. Chem. A 2013, 117, 7754−7766. doi: 10.1021/jp4063143
  • 437. “Activation of Methane by Os+: Guided Ion Beam and Theoretical Studies” Armentrout, P. B.; Parke, L.; Hinton, C.; Citir, M., ChemPlusChem (Memorial Issue for Detlef Schröder) 2013, 78, 1157-1173. doi: 10.1002/cplu.201300147
  • 438. “Guided Ion-Beam and Theoretical Studies of the Reaction of Os+ (6D) with O2: Adiabatic and Nonadiabatic Behavior” Hinton, C. S.; Citir, M.; Armentrout, P. B. Int. J. Mass Spectrom. (Memorial Issue for Detlef Schröder) 2013, 354-355, 87-98. doi: 10.1016/j.ijms.2013.05.015
  • 439. “Mass Spectrometric Methods for the Determination of Thermodynamic Data” Armentrout, P. B. In The Encyclopedia of Mass Spectrometry. Volume 9: The History of Mass Spectrometry, Yergey, A., Ed.; Elsevier: Amsterdam, in press.